	Transport Across the Cell Membrane
	Molecules Cross the Plasma Membrane
1.	What type of molecules can pass through the plasma membrane?
	small, non-charged, lipid soluble
2.	What type of molecules cannot pass through the plasma membrane?
	macromolecules, non-charged un vially
3.	Since some molecules and not others can cross a membrane, it is said to be <u>differentially</u> or selectively
	permeable. energy/
50	
4.	Passive transport ways do not use ATP and involve passive or facilitated transport.
	Active transport ways do use cellular energy and include active transport, endoy tosis and
	exocytosis.
Diffus:	what happens during diffusion? molecules more from an area of high concentration to low concentration (down II gradient) until equilibrium is established
1.	What happens during diffusion?
	to low concentration (about 22 states) with a fundament is established
2.	If dye molecules are placed in water, the <u>Solute</u> is the dye and the <u>Solvent</u> is the water
	molecules.
•	The diffusion of water across a selectively permeable member
3.	Define osmosis. From an area of high [water] to low [water]
4/	As water enters the thistle tube, hydrostotic pressure builds up and the net movement of water ceases.
X	
	The hydrostatic pressure is equivalent to the <u>65motre</u> pressure inside the tube.
5.	In isotonic solutions, the solute concentration is the same on both sides of the membrane, and there is
J.	no net gain or loss of water. If a cell is placed in a hypotonic solution, water enters the cell and may
	cause the cell to burst. Hemolysis refers to disrupted red blood cells.
	tease the cen to burst. Temoty 5.5 refers to disrupted red blood cens.
6.	Turgor pressure occurs when a plant cell is placed in hypotonic solution and the cytoplasm expands
0.	because the large VQ COLOR gains water. The plant cell does not burst due to the CELL Wall of the
	plant. Central
	plant.
7.	In a hypertonic solution, water leaves the cell and the cell shrinks. If red blood cells are placed in a crematic
	solution greater than sodium chloride, they shrink and the process is called
P	lasmolysis occurs when the plasma membrane pulls away from the cell wall and the cytoplasm shrinks in
	a hypertonic solution.
	a a, peace and conduction
8.	Define the following terms:
	a. turgor pressure: refers to the interior pressure that adds to the strength of a cell and builds up when the moves through osmosis
	of a nell and builds up usion the moves through osmosis
	NZ CIEDAHOH.
	PPA BURN IPH SHITTED IN OF NUMBER TOTAL SAULTON
	c. plasmolysis: plasma membrane pulls away, cell contents shrink, due to loss of water
	due to loss of water
9.	Red blood cells will not gain or lose water if they are put into 0.9% NaCl. such a solution is said to be
	isetonie. If the red blood cells were placed in 0.75% NaCl, such a solution would be considered
	hypotonic and water would enter (enter/leave) the cell and cause the cells to undergo
hem	Olysis. On the other hand, if the red blood cells were placed in 1.5% NaCl, such a solution would be
	considered hypertonic In this case, water would (enter/leave) the cell and the red blood
	cells would shrink (swell/shrink). Such a condition is termed crenation

Transport by Carrier Proteins

- 1. What accounts for the ability of useful molecules to enter and exit the cell at a rapid rate?

 CATTIET PROTEINS
- 2. Are carrier proteins specific for a particular molecule? YES facilitated
- 3. In <u>pessive</u> transport, glucose and amino acids bind to specific carrier proteins, transport the molecules to the other side of the membrane down their <u>concentration</u> radient without the expenditure of <u>ATP/energy</u>
- 4. In <u>active</u> transport, carrier proteins and an expenditure of <u>ATP/energy</u> are needed to transport molecules <u>against</u> their concentration gradient. If the carrier protein transports sodium and potassium, it is called a sodium-potassium <u>pump</u>.

Endocytosis and Exocytosis

- 1. Define endocytosis: cells take in substances by vesicle formation
- 2. Define exocytosis: vesicles fuse with plasma membrane as secretion occurs.
- 3. Phogocytosis occurs when the material taken in by endocytosis is large, such as a food particle. Pinocytosis occurs when vesicles form around a liquid or very small particles.

Summary

- 1. Label each of the situations listed below as to whether diffusion (D), osmosis (O), facilitated transport (F), active transport (A), exocytosis (E), phagocytosis (P) or pinocytosis (Pi) has taken place.
 - Glucose enters liver cells very quickly by binding to a receptor in the plasma membrane.
 - ____An onion is detected by smell at the end of the kitchen table.
 - O A red blood cell shrinks in a solution containing 1% salt.

 - Fluid, containing minerals, enters a cell by forming a vesicle at the plasma membrane.
 - Thyroid hormone exits the cell after the Golgi vesicle containing it fused with the plasma membrane.
 - A bacterial cell is engulfed by a white blood cell.
 - Sodium ions are pumped out of a cell against a concentration gradient.

2. Complete the table below to distinguish how molecules pass into and out of cell by writing Yes or No.

Process	Uses	Uses	Goes with	Goes	Plasma	Molecules	Molecules	Fluid	Solid
	Energy	Carrier	Conc.	against	Membrane	Enter Cell	Leave Cell	Uptake in	uptake in
		Protein	Gradient	Conc.	Forms			Vesicle	Vesicle
m:cc :				Gradient	Vesicles				
Diffusion	X	X	V	X	X	V	V	X	×
Osmosis	Х	X	V	X	X	V	V	X	X
Facilitate transport	×	V	V	×	X	V	V	X	×
Active Transport	V	V	×	V	X	V	V	×	X
Exocytosis	V	X	both	both	Manny	>	~	X	×
Pinocytosis	V	X	both	both	V	V	X	V.	X
Phagocytosis	V	X	both	both	V		×	×	V

- 3. How does each of the following molecules enter a cell?
 - a. oxygen DIFFUSION

- glucose FACILITATED DIFFUSION
- c. potassium ions ACTIVE TRANSPORTA