| | Name:Key | |-----------|--| | | Textbook p.24-32 (New) Date:Block: | | | 18x7book pr | | | p.20-29 (old) pH | | | | | 1 | What is the pH of the following substances? | | ~. | a. Sea water 8 | | 7 | · + b. Blood | | | c. Urine 6 | | | 5 d. Black coffee | | | e. Stomach acid ² | | | f. Stomach antacid | | 2 | Define the following terms: | | د. | a. Acid -molecule which releases H+ in H20 | | | | | | b. Base-molecule which releases OHT in H2O | | | c. Salt-ionic compound [metal + non-metal) | | | c. Salt-ionic compound [metal + non-metal) | | 3. | Which solution has the highest concentration of H ⁺ ions, one with a pH of 6, 2 or 11? Explain why. | | • | 2 highest [H+] released in H20 | | | 3 | | 4. | Why is pH so important to living things? PH of blood 15 7.4. Severe health consequences result if attered | | | PH of 61000 13 7.4" Severe hearing with the contract of | | | | | 5. | How do living things prevent rapid and drastic changes in pH? | | | Buffers keep pH within normal limits/range | | _ | For the College Constant of City of the City of City of City of the City of Ci | | b. | For the following statement, fill in the blanks with the words <u>high</u> or <u>low</u> . | | | An acid has a high concentration of H ⁺ and low concentration of OH ⁻ , whereas a base has | | | Low H ⁺ and high OH ⁻ . | | | On. | | 7: | What does a pH of 7 mean? | | | Neutral Same concentration [H+] and [OH] | | | NEUTRAL Same Concentration [H. 7 and [A. 7] | | | | | 8. | Draw the pH scale indicating the values for acid and base. | | Name: | Key | | | |-------|-----|------|--| | Date: | | Blk: | | ## **Acid and Base** Define an acid. Proton donor; molecule releases Ht in water 2. Define a base. Proton acceptor, molecule releases OH in water - Acids are molecules that dissociate in water, releasing $\underline{\hspace{1cm}}$ ions. boses are molecules 3. that either take up hydrogen ions or release hydroxide (OHT) ions. - pH is defined as the negative logarithm of the hydrogen ion concentration. As we move down the 4. pH scale, each unit ___\o____ times the acidity of the previous unit. A pH of ______ has an equal concentration of hydrogen ions and hydroxide ions. - The pH scale ranges from 0 to 14 Buffers are chemicals or combinations of chemicals 5. that take up excess hydrogen ions or hydroxide ions and help keep the pH within normal limits. - 6. Label the following diagram of the pH curve with these terms: basic, acidic, neutral, hydrogen ion concentration, and hydroxide ion concentration. 7. Complete the following table to help understand the relationship between the hydrogen ion concentration and pH. | [H ⁺] | pH | Acid/Base/Neutral | |-------------------------------|----|-------------------| | Example: 1 x 10 ⁻⁶ | 6 | acid | | 1 x 10 ⁻⁵ | 5 | acid | | 1 x 10 ⁻¹⁰ | 10 | base | | 1 x 10 ⁻⁷ | 7 | neutral | | 8. | As the pH of a solution changes from 8.6 to 9.6, it becomes more(acidic/basic). At a pH of | |----|--| | | 7, the number of hydrogen ions equals the number of hydroxide ions. A pH of 6 has 100 | | | times as much hydrogen ions as a pH of 8. The pH curve starts at and goes to | | | As the pH of a solution increase, the number of hydrogen ions | | | (increases/decreases). As the pH of a solution increases, the number of hydroxide ions | | | (increases/decreases). Bottles help to prevent any change in blood pH. |