APPRENTICESHIP AND WORKPLACE MATHEMATICS GRADE 10

[C] Communication
[CN] Connections
[ME] Mental Mathematics

Measurement	General Outcome: Develop spatial sense through direct and indirect measurement.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
A1. Demonstrate an understanding of the Système International (SI) by: - describing the relationships of the units for length, area, volume, capacity, mass and temperature - applying strategies to convert SI units to imperial units. [C, CN, ME, V]	(It is intended that this outcome be limited to the base units and the prefixes milli, centi, deci, deca, hecto and kilo.) 1.1 Explain how the SI system was developed, and explain its relationship to base ten. 1.2 Identify the base units of measurement in the SI system, and determine the relationship among the related units of each type of measurement. 1.3 Identify contexts that involve the SI system. 1.4 Match the prefixes used for SI units of measurement with the powers of ten. 1.5 Explain, using examples, how and why decimals are used in the SI system. 1.6 Provide an approximate measurement in SI units for a measurement given in imperial units; e.g., 1 inch is approximately 2.5 cm . 1.7 Write a given linear measurement expressed in one SI unit in another SI unit. 1.8 Convert a given measurement from SI to imperial units by using proportional reasoning (including formulas); e.g., Celsius to Fahrenheit, centimetres to inches.
A2. Demonstrate an understanding of the imperial system by: - describing the relationships of the units for length, area, volume, capacity, mass and temperature - comparing the American and British imperial units for capacity - applying strategies to convert imperial units to SI units. [C, CN, ME, V]	2.1 Explain how the imperial system was developed. 2.2 Identify commonly used units in the imperial system, and determine the relationships among the related units. 2.3 Identify contexts that involve the imperial system. 2.4 Explain, using examples, how and why fractions are used in the imperial system. 2.5 Compare the American and British imperial measurement systems; e.g., gallons, bushels, tons. 2.6 Provide an approximate measure in imperial units for a measurement given in SI units; e.g., 1 litre is approximately $1 / 4$ US gallon. 2.7 Write a given linear measurement expressed in one imperial unit in another imperial unit. 2.8 Convert a given measure from imperial to SI units by using proportional reasoning (including formulas); e.g., Fahrenheit to Celsius, inches to centimetres.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Measurement (continued)	General Outcome: Develop spatial sense through direct and indirect measurement.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
A3. Solve and verify problems that involve SI and imperial linear measurements, including decimal and fractional measurements. [CN, ME, PS, V]	(It is intended that the four arithmetic operations on decimals and fractions be integrated into the problems.) 3.1 Identify a referent for a given common SI or imperial unit of linear measurement. 3.2 Estimate a linear measurement, using a referent. 3.3 Measure inside diameters, outside diameters, lengths, widths of various given objects, and distances, using various measuring instruments. 3.4 Estimate the dimensions of a given regular 3-D object or 2-D shape, using a referent; e.g., the height of the desk is about three rulers long, so the desk is approximately three feet high. 3.5 Solve a linear measurement problem including perimeter, circumference, and length + width + height (used in shipping and air travel). 3.6 Determine the operation that should be used to solve a linear measurement problem. 3.7 Provide an example of a situation in which a fractional linear measurement would be divided by a fraction. 3.8 Determine, using a variety of strategies, the midpoint of a linear measurement such as length, width, height, depth, diagonal and diameter of a 3-D object, and explain the strategies. 3.9 Determine if a solution to a problem that involves linear measurement is reasonable.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Measurement (continued)	General Outcome: Develop spatial sense through direct and indirect measurement.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
A4. Solve problems that involve SI and imperial area measurements of regular, composite and irregular 2-D shapes and 3-D objects, including decimal and fractional measurements, and verify the solutions. [ME, PS, R, V]	(It is intended that the four arithmetic operations on decimals and fractions be integrated into the problems.) 4.1 Identify and compare referents for area measurements in SI and imperial units. 4.2 Estimate an area measurement, using a referent. 4.3 Identify a situation where a given SI or imperial area unit would be used. 4.4 Estimate the area of a given regular, composite or irregular 2-D shape, using an SI square grid and an imperial square grid. 4.5 Solve a contextual problem that involves the area of a regular, a composite or an irregular 2-D shape. 4.6 Write a given area measurement expressed in one SI unit squared in another SI unit squared. 4.7 Write a given area measurement expressed in one imperial unit squared in another imperial unit squared. 4.8 Solve a problem, using formulas for determining the areas of regular, composite and irregular 2-D shapes, including circles. 4.9 Solve a problem that involves determining the surface area of 3-D objects, including right cylinders and cones. 4.10 Explain, using examples, the effect of changing the measurement of one or more dimensions on area and perimeter of rectangles. 4.11 Determine if a solution to a problem that involves an area measurement is reasonable.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Geometry	General Outcome: Develop spatial sense.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
B1. Analyze puzzles and games that involve spatial reasoning, using problem-solving strategies. [C, CN, PS, R]	(It is intended that this outcome be integrated throughout the course by using sliding, rotation, construction, deconstruction and similar puzzles and games.) 1.1 Determine, explain and verify a strategy to solve a puzzle or to win a game; e.g., - guess and check - look for a pattern - make a systematic list - draw or model - eliminate possibilities - simplify the original problem - work backward - develop alternative approaches. 1.2 Identify and correct errors in a solution to a puzzle or in a strategy for winning a game. 1.3 Create a variation on a puzzle or a game, and describe a strategy for solving the puzzle or winning the game.
B2. Demonstrate an understanding of the Pythagorean theorem by: - identifying situations that involve right triangles - verifying the formula - applying the formula - solving problems. [C, CN, PS, V]	2.1 Explain, using illustrations, why the Pythagorean theorem only applies to right triangles. 2.2 Verify the Pythagorean theorem, using examples and counterexamples, including drawings, concrete materials and technology. 2.3 Describe historical and contemporary applications of the Pythagorean theorem. 2.4 Determine if a given triangle is a right triangle, using the Pythagorean theorem. 2.5 Explain why a triangle with the side length ratio of 3:4:5 is a right triangle. 2.6 Explain how the ratio of 3:4:5 can be used to determine if a corner of a given 3-D object is square $\left(90^{\circ}\right)$ or if a given parallelogram is a rectangle. 2.7 Solve a problem, using the Pythagorean theorem.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Geometry (continued)	General Outcome: Develop spatial sense.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
B3. Demonstrate an understanding of similarity of convex polygons, including regular and irregular polygons. [C, CN, PS, V]	3.1 Determine, using angle measurements, if two or more regular or irregular polygons are similar. 3.2 Determine, using ratios of side lengths, if two or more regular or irregular polygons are similar. 3.3 Explain why two given polygons are not similar. 3.4 Explain the relationships between the corresponding sides of two polygons that have corresponding angles of equal measure. 3.5 Draw a polygon that is similar to a given polygon. 3.6 Explain why two or more right triangles with a shared acute angle are similar. 3.7 Solve a contextual problem that involves similarity of polygons.
B4. Demonstrate an understanding of primary trigonometric ratios (sine, cosine, tangent) by: - applying similarity to right triangles - generalizing patterns from similar right triangles - applying the primary trigonometric ratios - solving problems. [CN, PS, R, T, V]	4.1 Show, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side opposite to the length of the side adjacent are equal, and generalize a formula for the tangent ratio. 4.2 Show, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side opposite to the length of the hypotenuse are equal, and generalize a formula for the sine ratio. 4.3 Show, for a specified acute angle in a set of similar right triangles, that the ratios of the length of the side adjacent to the length of the hypotenuse are equal, and generalize a formula for the cosine ratio. 4.4 Identify situations where the trigonometric ratios are used for indirect measurement of angles and lengths. 4.5 Solve a contextual problem that involves right triangles, using the primary trigonometric ratios. 4.6 Determine if a solution to a problem that involves primary trigonometric ratios is reasonable.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Geometry (continued)	General Outcome: Develop spatial sense.	
Specific Outcomes	Achievement Indicators	
It is expected that students will:		The following set of indicators may be used to determine whether students have met the corresponding
specific outcome.		

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Number	General Outcome: Develop number sense and critical thinking skills.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
C1. Solve problems that involve unit pricing and currency exchange, using proportional reasoning. [CN, ME, PS, R]	1.1 Compare the unit price of two or more given items. 1.2 Solve problems that involve determining the best buy, and explain the choice in terms of the cost as well as other factors, such as quality and quantity. 1.3 Compare, using examples, different sales promotion techniques; e.g., deli meat at $\$ 2$ per 100 g seems less expensive than $\$ 20$ per kilogram. 1.4 Determine the percent increase or decrease for a given original and new price. 1.5 Solve, using proportional reasoning, a contextual problem that involves currency exchange. 1.6 Explain the difference between the selling rate and purchasing rate for currency exchange. 1.7 Explain how to estimate the cost of items in Canadian currency while in a foreign country, and explain why this may be important. 1.8 Convert between Canadian currency and foreign currencies, using formulas, charts or tables.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Number (continued)	General Outcome: Develop number sense and critical thinking skills.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
C 2 . Demonstrate an understanding of income, including: - wages - salary - contracts - commissions - piecework to calculate gross pay and net pay. $[\mathrm{C}, \mathrm{CN}, \mathrm{R}, \mathrm{~T}]$	2.1 Describe, using examples, various methods of earning income. 2.2 Identify and list jobs that commonly use different methods of earning income; e.g., hourly wage, wage and tips, salary, commission, contract, bonus, shift premiums. 2.3 Determine in decimal form, from a time schedule, the total time worked in hours and minutes, including time and a half and/or double time. 2.4 Determine gross pay from given or calculated hours worked when given: - the base hourly wage, with and without tips - the base hourly wage, plus overtime (time and a half, double time). 2.5 Determine gross pay for earnings acquired by: - base wage, plus commission - single commission rate. 2.6 Explain why gross pay and net pay are not the same. 2.7 Determine the Canadian Pension Plan (CPP), Employment Insurance (EI) and income tax deductions for a given gross pay. 2.8 Determine net pay when given deductions; e.g., health plans, uniforms, union dues, charitable donations, payroll tax. 2.9 Investigate, with technology, "what if ..." questions related to changes in income; e.g., "What if there is a change in the rate of pay?" 2.10 Identify and correct errors in a solution to a problem that involves gross or net pay. 2.11 Describe the advantages and disadvantages for a given method of earning income; e.g., hourly wage, tips, piecework, salary, commission, contract work.

[C] Communication	[PS] Problem Solving
[CN] Connections	[R] Reasoning
[ME] Mental Mathematics	[T] Technology
and Estimation	[V] Visualization

Algebra	General Outcome: Develop algebraic reasoning.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
D1. Solve problems that require the manipulation and application of formulas related to: - perimeter - area - the Pythagorean theorem - primary trigonometric ratios - income. [C, CN, ME, PS, R]	(It is intended that this outcome be integrated throughout the course.) 1.1 Solve a contextual problem that involves the application of a formula that does not require manipulation. 1.2 Solve a contextual problem that involves the application of a formula that requires manipulation. 1.3 Explain and verify why different forms of the same formula are equivalent. 1.4 Describe, using examples, how a given formula is used in a trade or an occupation. 1.5 Create and solve a contextual problem that involves a formula. 1.6 Identify and correct errors in a solution to a problem that involves a formula.

